Good Moduli Spaces for Artin Stacks
نویسنده
چکیده
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
منابع مشابه
Local Properties of Good Moduli Spaces
We study the local properties of Artin stacks and their good moduli spaces, if they exist. We show that near closed points with linearly reductive stabilizer, Artin stacks formally locally admit good moduli spaces. We also give conditions for when the existence of good moduli spaces can be deduced from the existence of étale charts admitting good moduli spaces.
متن کاملGroup Compactifications and Moduli Spaces
We give a summary of joint work with Michael Thaddeus that realizes toroidal compactifcations of split reductive groups as moduli spaces of framed bundles on chains of rational curves. We include an extension of this work that covers Artin stacks with good moduli spaces. We discuss, for complex groups, the symplectic counterpart of these compactifications, and conclude with some open problems a...
متن کاملModuli of Twisted Sheaves
We study moduli of semistable twisted sheaves on smooth proper morphisms of algebraic spaces. In the case of a relative curve or surface, we prove results on the structure of these spaces. For curves, they are essentially isomorphic to spaces of semistable vector bundles. In the case of surfaces, we show (under a mild hypothesis on the twisting class) that the spaces are asympotically geometric...
متن کاملCanonical Artin Stacks over Log Smooth Schemes
We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the...
متن کاملArtin’s Axioms, Composition and Moduli Spaces
We prove Artin’s axioms for algebraicity of a stack are compatible with composition of 1-morphisms. Consequently, some natural stacks are algebraic. One of these is a common generalization of Vistoli’s Hilbert stack and the stack of branchvarieties defined by Alexeev and Knutson.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008